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In this paper we discuss the common shortcomings of a large class of essentially-affine
models in the current monetary environment of repressed rates, and we present a class of
reduced-form stochastic-market-risk affine models that can overcome these problems. In
particular, we look at the extension of a popular doubly-mean-reverting Vasicek model,
but the idea can be applied to all essentially-affine models. The model straddles the P-
and Q-measures. By allowing for a market price of risk whose stochasticity is not fully
spanned by the yield-curve state variables that enter the model specification, we break the
deterministic link between the yield-curve-based return-predicting factors and the market
price of risk, but we retain, on average, the observed statistical regularities reported in
the literature. We discuss in detail how this approach relates to the recent work by
Joslin et al. (2014) [S. Joslin, M. Priebsch & K. J. Singleton (2014) Risk premiums in
dynamic term structure models with unspanned macro risk, Journal of Finance LXIX
(3), 1197-1233]. We show that the parameters of the model can be estimated in a simple
and robust manner using survey-like information; and that the model we propose affords
a more plausible decomposition of observed market yields into expectations and risk
premia during an important recent market event than the one produced by mainstream
essentially-affine models.

Keywords: Affine modelling; market price of risk; predictions of interest rates.

1. The Motivation for This Paper

In this paper we pursue two goals. First, we intend to show that a large class
of essentially-affine models with the market price of risk a deterministic (affine)
function of the state variables produce a very similar and, in the current monetary
conditions, similarly unreliable decomposition of the observed market yields in their
expectation and risk-premium components. We explain why this is the case, and we
analyze in detail in this light a market event (the “taper tantrum” of Spring 2013)
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that constitutes a near-perfect real-life controlled experiment of the risk-premium/
expectation decomposition. To the extent that these models are used as ancillary
tools to guide monetary decisions, their lack of reliability in recently experienced
monetary conditions is important.

Second, we propose a reduced-form affine model that, by breaking the deter-
ministic link between the market price of risk and the slope of the yield curve,
can overcome the problems that we have identified in the first part of the paper.
The model we introduce shares some of the insights found in the recent work by
oslin et al! dZDJ.AI) (JPS in the following) about the variables needed to span bond
excess returns, and can be regarded as a reduced-form version of their approach.
One major difference is that the approach we propose that does not require knowl-
edge on the P-measure dynamics for the yield state variables that the JPS model
requires and allows a more general and flexible specification of the market price
of risk than the JPS model implies. Dispensing with the task of estimating the P-
measure reversion-speed matrix and reversion level for the yields greatly simplifies
the parametrization of the model, because of the well-known quasi-unit-properties
of rates. Thanks to its simplicity and parsimony, our approach can be implemented
and calibrated very easily and robustly both to the market yield curve and to
the yield covariance matrix (see Sec. [). Its robustness decreases the risk of over-
parametrization and facilitates the economic interpretation of the results.

Our main goal in formulating this model is to produce a robust and parsimo-
nious tool for extracting risk premia and expectations. Since we do not estimate
the P-measure dynamics for the yield state variables, we obtain the required infor-
mation from observed market prices and from projections (such as the “blue dots”
published by the Federal Reserve Bank) of the real-world path of the short rate. We
are aware that the interpretation of these projections as market expectations is not
unproblematic. However, we show that the predictions for risk premia and expecta-
tions produced by the model here presented are likely be more reliable than those
provided by many popular yield-curve-based essentially-affine models that eschew
real-world projections and monetary guidance. We discuss in detail in Sec. Hl why
we believe this to be the case. The model we propose could therefore help both in
informing monetary policy and in the making of investment decisions.

Since our focus is on producing reliable estimates of expectations and risk premia
in all market conditions (including conditions of very low rates), we extend our
approach in Sec.[d to incorporate the option-like nature of rates close to zero (see
Black 1995). We do so by explicitly modeling the shadow rate. We can easily do so in
the affine setting we use thanks to the accurate approximations recently introduced
by Wi & Xial (lZ_O_lfzI) This allows us to determine a “confidence band” for our
estimates of the risk premia.

Finally, the particular reduced-form implementation we present in this work can
be seen as a particularly simple representative example of a whole class of reduced-
form stochastic-market-price-of-risk models. A richer, yet still parsimonious,
member of this class could, for instance, be a stochastic-market-price-of-risk model
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in which principal components are used as state variables. We leave this develop-
ment for future study.

2. The Spanning Conundrum

A number of empirical regression studies suggest that the excess returns reaped
by investing in long-dated Treasury bonds and funding the purchase by borrowing
at the short-maturity rate are predictable and state-dependent. In earlier studies,
the return-predicting factor was identified as the slope of the yield curve (see, for
example, Fama & Bliss ,|Qam.p.b_eﬂ_&_s_bﬂled|_]_9_9j]) More recent works suggest
that a more complex pattern of forward rates (e.g. tent-shaped: see, for example,
, or bat-shaped: see, for exam-
e,[Daj et all 120_0_4 |Rgbgna,ﬁd |2Qlj hﬁl]_egaéhﬂlﬁl ) may have a greater explanatory
power.b Whatever the exact shape of these yield-curve-based return-predicting fac-
tors, for the future discussion it is important to remember (i) all these studies
concur that the slope has a significant predictive power of excess returns and that
(ii) more than three (linear combinations of) yields are needed in order to predict
excess returns as efficiently as possible.d
All these approaches use as explanatory variables yield-curve-based quantities.
However, [Ludvigson & Nd dM) have recently pointed out that macrofinancial
quantities (related to inflation and real economic activity) add significant explana-
tory power to the Cochrane—Piazzesi return-predicting factor (which the authors
take as the most powerful yield-curve-based predictive benchmark). These find-
ings have inspired the works by |[Radwanski (M) and Cieslak & Povala (2010,
2013) amongst others, who combine yield-curve predictors with proxies for inflation

#More precisely, in [Fama & Blisd (@) the return-predicting factor for the n-maturity excess
return was defined as the difference between the n-year forward rate and the 1-year excess return.
Therefore, strictly speaking, a different return-predicting factor was applied to each individual
excess return. (The different slopes, of course, are very similar, so it would not be difficult to
construct a common factor out of the n highly correlated ones.) Similar considerations apply to
the Campbell & Shiller’s (1991) study, in that they used (different, but highly correlated) yield
spreads as return-predicting factors.

bThe tent-shaped and the bat-shaped return-predicting factors have v1rtually identical explanatory
power for excess returns (as captured by the R? statlstlc) ) argues that the
optically striking differences between the two patterns are of little economic consequence, and can
be traced to the quasi-collinearity of the regressors.

“We define as “yield-curve-based” a return-predicting factor made up exclusively of current or
lagged yield-curve variables, such as (linear combinations of) yields or forward rates. When a
macroeconomic variable [such as inflation in the case of )] is regressed on yields,
and the right-hand-side variables with their coefficients are used as return-predicting factors, we
are still dealing with a yield-curve-based approach to the prediction of excess returns. However,
when the residuals of a regression on a macrofinancial variable [such as long-term inflation or the

savings rate in the case of m m )] form part of the return-predicting factor we
no longer deal with a pure y1eld curve-based prediction.
‘1&5115 & Hamilton ) express a dissenting view regarding point (ii); see, however, [Cachrand

) for a rebuttal.
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expectations and, by doing so, obtain very high R? statistics in their predictions of
excess returns.

In the light of these findings it would seem obvious that an affine no-arbitrage
term structure model designed to straddle the risk-neutral (Q) and real-world (P)
measures should use as state variables both yield-curve quantities (such as princi-
pal components) and macrofinancial variables (such as expected inflation or some
proxy for real economic activity). However, this creates a conundrum in the almost-
universally-adopted essentially-affine framework — a conundrum which we discuss
in some detail below, because it is central to our proposed approach.

As pointed out by, amongst others, [Ludvigson & NG ( ), as long as the
mapping from the state variables to the yields is invertible, then it is always possible
to redefine the “co-ordinates” of a mixed yield-curve/macrofinancial model purely
in terms of yields. More precisely, suppose that we start with n state variables, ¢,
i=1,2,...,n. Under the real-world measure we have

d.’IJt = ’CP(GP — .’L't)dt + SdZt, (21)

where KF is the n x n reversion-speed matrix in the real-world (objective, P) mea-
sure, OF is the n x 1 reversion-level vector, also in the real-world (P) measure, z;
denotes the n x 1 vector with the state variables, dz is an n x 1 vector of indep-
endent Brownian increments and S is the n x n diffusion matrix. As usual, dz is
defined on a filtered probability space, (2, F,P), that satisfies the usual conditions.

If the market price of risk vector, A, is an affine function of the state variables,

At = Ao + Axy, (2.2)
so is the short rate,
re = Uy + g . (2.3)
It is well known (see e.g. Dal_&_&nglﬂgdbﬂﬂd) that bond prices are given by
Pl = eprtTHBtT)Txo, (2.4)

for any t <T.°
This expression can be derived as the discounted expectation, under Q, of the
path of the short rate, in turn obtainable via Eq. 23) from

day = KX (6F — z)dt + Sdz + S(\o + Axy)dt (2.5)

and the mapping afforded by Eq. (Z3]). As well known, one can equivalently write
dr; = K209 — 2;)dt 4 Sdz, (2.6)

where the terms S)\g and SAz; have been absorbed into a new reversion-speed

matrix and reversion-level vector.

©The literature on affine models in finance in general, and term structure modeling in particular,
is immense. For a recent review, see e.g. Im (@E) For a derivation of the result when the
reversion speed matrix is invertible and diagonalizable, and for an expression for A? and BtT, see
Appendix A.
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Since yields in this setting are affine functions of the state variables, as long as
the linear mapping between the chosen state variables and the yields is invertible,
we can always find n initial values for the n state variables, x67 i=1,2,...,n, such
that n market yields are exactly recovered. Since the original state variables are
linked to these n yields by an (assumed-invertible) affine transformation, we can
just as well work with the n chosen yields as state variables. The market values of
these chosen yields will be perfectly recovered, but that all the other yields only
to within measurement error. To stress the privileged status of the state-variable
yields, we will denote them by the symbol, y;. We stress again the importance of
invertibility for the argument.

In this setting it follows that the (essentially-affine) market price of risk, which
we had expressed as in Eq. (2.2)), can be rewritten as

At = Ao + AGi. (2.7)

Suppose now, however, that the market price of risk cannot be fully expressed as
an affine function of the special-yields state variables, but can instead be written as

At = Ao + AJy + Ruy, (2.8)

where w; are m new nonyield-curve variables that are orthogonal to the special
yields, 7;.f If this is the case then the pricing equation for the state variables under
Q becomes

e = K5 (05 — §p)dt + Sydz + Syhedt
o (2.9)
= ICy (0 — Bi)dt + Sydz + S, (Xo + AT + Ruwy)dt.

Now, the terms Syxo and Sy[~\§t can be absorbed into the new Q-measure reversion-
level vector and reversion-speed matrix exactly as before, but not so for the term
SyRw;. One can now only write

dyy = K205 — go)dt + Sydz + Sy Rwydt. (2.10)

Let us, however, augment the state vector from n to n + m with the new
unspanned variables wy:

{etn = {2 nrm = {2t} U {wilm. (2.11)

Using the augmented set as state variables, we can now absorb the term Sy Rw,dt
into a new reversion-speed matrix and a new reversion-speed level. And, of course,
with the augmented set of state variables, the specification of the market price
of risk becomes essentially affine again (in {x}},4.m). This means that, using the

fWith Eq. @3) one is implicitly saying that macroeconomic variables can affect the investors’
utility function. This is a priori not implausible, as worsening economic conditions may increase
risk aversion.

1750027-5



R. Rebonato

augmented state vector {a}},4+m we can write again
PT = expo T(Bs) %0 (2.12)

This being the case, by inversion we can obtain as before n+m “special” yields,
where “special” means again that they will be ezactly priced and that they can be
promoted to the status of state variables.

We have therefore transformed a problem with n yield state variables and an
unspanned market of risk, to a problem with n 4+ m yield state variables and a
fully spanned market price of risk (and therefore we are back to working with an
essentially-affine purely-yield-curve-based model).

This is surprising, for several reasons: first, because this result seems to imply
that, in a deterministic-volatility affine setting, there can be nothing more to the
market price of risk than yield-curve variables. Second, because it seems to contra-
dict the received wisdom that a small number of principal components give a very
satisfactory description of the Q-measure yield-curve dynamics.

Eudﬂgsgm_&_N_d (l2_0D_9|) offer several possible explanations for this conundrum
and we refer the reader to their Sec. ] for a discussion. An additional explanation
could be found along the following lines.

Consider the statistical estimation of excess returns. Once we have chosen the
perfectly priced n+ m yields as explanatory variables, we are faced with the task of
regressing the excess returns on this augmented (and now possibly rather large)
set of state variables. Unfortunately, when we choose yields as state variables,
we are choosing a highly collinear set of explanatory variables (of “co-ordinates”)
onto which to project excess returns. Since all yields are strongly correlated, to

“pick up” information that was orthogonal to the original n yields and contained
in the additional (but highly correlated) m yields [see Eq. (Z8)], the loadings of
the return-predicting factor will necessarily amplify small intra-yield differences.
No surprise, then, that both “tents” and “bats” return-predicting factors have such
wild (and so optically different) shapes, with large positive and large negative coeffi-
cients, despite having almost identical predicting power [as documented in

]. Indeed, this amplification of small differences is one of the best “known sta-
tistical problems that arise when using linear combinations of multiple forward rates,

such as the sensitivity to small measurement errors”.® As Clieslak & Povala )
point out, “although the CP ﬂQOﬂlL&I].Q_&LEL&ZZﬂSj] factor captures an important
element of the risk premium, its coefficient estimates are noisy, creating a wedge
between in- and out-of-sample forecasts”."

What if one had used principal components as the original state variables, i.e.
linear combination of yields that are built to be orthogonal to each other? Suppose

that n was chosen to be 3 and m to be 3 as well |[Ludvigson & NG dw) use

up to eight linear combinations of macrofinancial quantities. We limit ourselves to

gCieslak & Povala (2013, p. 3).
hSee p. 32 of the work.
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three for the sake of parsimony]. In principle the fourth, fifth and sixth principal
components, which are orthogonal to the first three important components, could
in principle pick up very efficiently the extra bond-return predictability. However,
the problem now is that the estimation of high-order principal components is easily
contaminated by noise and that they have much less stable loadings (a much less
stable shape) than the first three.

From this argument it follows that one can look at the spanning problems from
two different angles.

From one perspective one can claim that, no matter how many yields one looks
at, there is information about excess returns that is not contained in these yields.
In this view, the impossibility is, so to speak, irreducible. If this view is correct,
there is something deeply inadequate and troubling about (invertible, deterministic-
volatility) essentially-affine models.

Alternatively one can argue that, admittedly, three yields do not contain all
the available information about excess returns and that more yields in principle
could — and the argument above shows how they could be constructed. However,
in practice these n + m yields do not predict well, because they constitute a very
poor set of coordinates onto which to project the excess-return information: in
an (n + m)-dimensional space, the yield “axes” are almost collinear, and a small
measurement error can translate into a large difference in the resulting projections
onto the coordinate axes. And, as we argued, despite being orthogonal, principal
components do not fare much better, because, for yield-curve-related problems,
noise easily contaminates the components of high order.

It is important to note that in this view essentially-affine modeling with yield-
curve-based variables is in (practical) troubles, but not affine modeling tout court.
There is therefore nothing stopping the researcher from using a market price
of risk of the form (Z8), and using the yield-curve-related and macroquanti-
ties as state variables, without translating them onto the equivalent special-yields
coordinates.

3. The Approach by Joslin et al. (2014)

The discussion above puts into perspective the approach by Joslin et all (|2QlAI),
whose procedure we analyze more precisely in this section. For ease of reference to
their original work, in this section we use the same symbols used in

), even when the usage is slightly at odds with the (more common) notation
we employ in the rest of the paper.

Joslin et all (2014) use as state variables a set of quantities, Z;,

dZ; = K¥(Zy — 0%)dt + Sdz;, (3.1)

which they split into a vector, Py, of yield-curve variables and a vector, My, of
macroeconomic variables. Importantly, they do not assume that the macroeconomic
variables can be deterministically spanned by the yield-curve variables. This means
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that in the projection
M=~ +711Pt + OM; (3.2)

the residuals, OM;, are not identically zero. This is in turn means that knowing
the value of the (combination of) yields P; does not convey everything there is to
know about excess returns. So, they write for the P-measure evolution of their state

variables:
dPt - ’CQ,P}P ’CQ,P;M 021; Pt di 4 S’p'p S’pM dzt73
M| K K] \ 65| [ My Sap Spam| [dzM]
(3.3)

Then Joslin et all dZ_O_lAI) impose that the market price of risk, A\, should be an
affine function of the extended variables, Z;:

At = Ao,z + A1,z 2. (3.4)

This makes their approach essentially affine, with the real-world expectations of
(portfolios of) yields, P;, depending on the full set of variables {Z,} = {P;} +
{M:}. At this point, however, they impose that in the risk-neutral measure, Q, the
portfolios of yields should follow a mean-reverting process for the P-variables only,!
of the form:

APy = K3(Py — 03)dt + Sppdzy. (3.5)
This implies
(1) the market yields, y{, will be an affine function of the P;-variables only:
vi =oi +(8) Py (3.6)

(2) and also the short rate will be an affine function of the subset, P, of variables
that map exactly onto the yields only:

re =&,y + (&1.9) Pe. (3.7)

As for the market price of risk, Joslin et all (l2DJ_AJ) assume that we know the
real-world drifts for the P-variables. Then the market price of risk for the princi-
pal components, Ap(Z;), which depends on the whole set of variables, Z;, will be
given by the (scaled) difference between the real-world and risk-neutral drifts of the
principal components:

Ap(Ze) = Spplip(Z) — 13 (Pr)), (3.8)

with p5(Z;) coming from Eq. (B1) and M%(Pt) from Eq. (33). The important thing
to note is that the P-measure drift of the P-variables, p%(Z;), (and hence their

I After rotation we can think of these P-variables as principal components. Without loss of gener-
ality we will do so in what follows.
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real-world expectations) depends on the full set of yield-curve and macrofinancial
variables, and is given (to first order) by

pp(Z) = Kpp(0p — Pr) + Kp g (03 — M), (3.9)
not just by
1o (Z1) = Ko (0 — P1). (3.10)

This means that P-measure expectations of yields, and hence excess returns, depend
on the full set of yield-curve and macroeconomic variables.

We note that the approach by Joslin et all dm rests on a “delicate cancella-
tion”. This can be seen as follows. In their model, investors form expectations in
the real-world measure making use of yield-curve and nonyield-curve information
[see the term /5 (Z;)]. However, their market price of risk must be such so as to
exactly cancel the dependence on the macrofinancial variables present in the term
W (Py) when the Q-measure drift is obtained:

HR(P) = i () = SppAp(Z1). (3.11)

This is, of course, possible, but it is difficult to justify on financial grounds. It
is not clear, in fact, why certain features of investors’ response to risk [namely, the
nature and dependence on the state variables of their aversion to risk, as embodied in
the market price of risk, Ap(Z;)] should be such exactly to cancel the M-dependence
of the P-measure drift, p%(Z;), of the chosen yields. See Eq. (Z3) again.

In our model we do not invoke such a “delicate cancellation”, and, as we shall
see, this will be one important point of difference between the approach we present

below and the model by [Joslin et all (2014).

4. Practical Advantages of the Augmented-Variable Approach

Leaving the issue of the “delicate cancellation” to one side, approaches such as the
one by \Joslin_et_all (|2QLAJ) (and ours) can overcome an important shortcoming of
yield-curve-based essentially-affine models. Since the overcoming of this limitation
is central to our approach, we discuss it in some detail in this section.

4.1. Stmalarity of yield-curve-based risk premia predictions

To highlight the nature of the above-mentioned shortcoming, we look at the predic-
tions of excess returns produced by three essentially-affine term-structure models,

such as|Adrian et all (2013),ID’Amico et all (2010) and|[Rebonato et all (2017) mod-

els, typical of current modeling practice. These three models were chosen because

they use very different state variables and very different estimation methods of the
market price of riskJ We also consider the predictions of excess returns produced

IThe three approaches follow very different routes to estimating the market price of risk: one model
) uses a Kalman filter technique to estimate the latent state variables in the
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by a purely statistical estimation (multivariate regression against the slope of the
yield curve).

To make the discussion more precise, let P be the time-t price of a T-maturity
bond. If we assume that the price P/ is affected by n state variables,¥ and that
investors form prices rationally,' the expected return from holding over a period At
a (discount) bond of maturity 7" can in general be written as follows:

Pl 1 P
E} [d—;] = |re+ 55> O i, (4.1)
P, — O}

where o; is the volatility of factor ¢ and A; is the “market price of risk” associated
with the same factor.

If one also assumes (“affine assumption”) that

(i) the n state variables jointly evolve according to

dx; = K(0 — x;)dt + Sdzy; (4.2)

and (ii) there exist a scalar u, and a vector g7 such that the “short” (riskless) rate
is given by an affine function of the state variables:

T = U + gl Xy, (4.3)

then, as we have discussed (see again Dai & Singletol 2001]), the bond price, P! =
P(71), is given by™

PT = oA +(B) x (4.4)

Under the affine assumption, Eq. 1) can be rewritten as

dpl
PT

Ef = [Tt +Z(B;Tk);r01)\l . (45)

If one also assumes that the market price of risk is also an affine function of the
same state variables (the “essentially-affine assumption”),

One can write for the expected excess return of a vector of bonds:
dP’”
E; [?Tt - rf} = (B2 (4.7)

P-measure; another (the one of ) uses OLS regressions to estimate, also in the
P-measure, the process for the now specified state variables; and the third, the PCA-based model
by Rebonato et al. (2016), uses market prices and statistical estimates of excess returns.
KWithout loss of generality, we assume in the following that the state variables are uncorrelated.
This can always be achieved by a suitable rotation of axes.

'We therefore exclude, for instance, market segmentation and behavioral biases — or, rather, we
assume that, if these deviations are present, pseudo-arbitrageurs always exist which can bring
prices back to fundamentals.

mSee Appendix A for the solution of this problem (i.e. for explicit expressions for A? and BtT)
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The empirical evidences regarding risk premia (market prices of risk) are that:

(1) the expectation hypothesis is rejected (forward prices are not unbiased estima-
tors of future prices, and hence the A; are not all zero);

(2) the weak expectation hypothesis (existence of a constant risk premium) is
rejected;

(3) what investors seek compensation for is level risk; and

(4) the magnitude and sign of the compensation is linked to the slope of the yield
curve. See, in this respect, i dl9_9_]]), i ).m

If, without loss of generality, we choose as state variables principal components,
which lend themselves to an interpretation as level, slope and curvature, then piece
of evidence (4) implies that

(0 a 0]
A=10 b 0]. (4.8)
_O c O_

Pieces of evidences (3) and (4) together imply that

(0 a 0]
A= 10 0 0. (4.9)
0 0 0

And, finally, piece of evidence (2) implies that
Ao = 0. (4.10)

Given this precise formalization of the problem, the shortcoming of essentially-
affine models alluded to above can be clearly understood by looking at Fig. [Il
This figure shows the risk premia for the 10-year yield obtained with three prima
facie very different, but all yield-curve-based, affine term structure models (the
curves labeled “ACM”, “KW?” and “Affine”), and from a purely statistical esti-
mation of the risk premium obtained using a proxy for the yield-curve slope as
state variable (curve labeled “slope”). Admittedly, the levels for the risk premia
produced by the four estimation approaches are somewhat different.” However,

1 As discussed, recent works (Cochrane & Piazzesi[2005, [Cieslak & Povald ) suggest that more

complex return-predicting factors may have better ex ante explanatory power. However, the con-
sensus remains that the slope is certainly an important — albeit, possibly, not optimal — return-
predicting factor. ) actually argue that, out-of-sample, it remains the
only robust factor.]
©As for the statistical estimation of the level of the excess return (i.e. the estimate that gives
rise to the curve labeled “slope”), we find that the uncertainty associated with the intercept
in the regression of excess returns against the second principal component is much larger than
the uncertainty associated with the “beta” (slope) coefficient. Implicitly or explicitly, both the
m) and the (E%_C)i) models require the estimation of the real-
world behavior for the quasi-unit-root process of the level of rates. The quasi-unit-root nature
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Fig. 1. The risk premia for the 10-year yield obtained by the Kim—-Wright model (red line), the
Rebonato-Saroka—Putyiatin affine model (green line) and from the regressions presented in Rebon-
ato (2016) (blue line) for the period from 1999 to 2014. Note that the levels of the risk premia are
rather different, but the changes are very strongly correlated. They are also clearly linked to the
slope of the yield curve (purple line).

it is amazing how changes in the risk premia produced by the three models
are very strongly correlated, and similar to what produced by the statistical
regression.P

Why do these modeling approaches produce such similar estimates? The similar-
ity of the model predictions with the statistical estimate of the risk premia suggests
that the “training” of all the models implicitly discovers the slope dependence in
the learning dataset. Then, the essentially-affine nature of these models and the
choice of yield-curve-only quantities as state variables force a deterministic depen-
dence of the market price of risk on the slope: simplifying somewhat, in all these
essentially-affine, yield-curve-only models, when the slope is high, the market price
of risk must be high. We argue in the next subsection that, while this regularity
may well be valid on average, enforcing it (as yield-curve-based essentially-affine
models must do) at all times can have perverse, and very unpleasant, consequences.
We present our case by discussing in detail the rare — and, from the modeling
point of view, precious — instance of a “real-life experiment” offered by the “taper
tantrum” events of 2013.

of the process makes the estimate of the reversion level particularly difficult. This P-measure
reversion level, in turn, is the main determinant of the level of the risk premium. The level of the

risk premium is therefore particularly difficult to estimate using relationships such as (Z8]).
Joslin ;Z all (20 Z)

PSee in this respect
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4.2. The case of the “taper tantrum” and its significance

To frame the discussion, it is important to give a synthetic description of the mar-
ket developments that surrounded the “taper tantrum” events in the May—October
2013 period. Simplifying considerably, the pronouncements of Ben Bernanke (2013),
then Chairman of the Federal Reserve Bank, were interpreted by the market as
implying an earlier-than-previously-anticipated rise in rates. The important point
is that, while uncertainty may well have been increased by the announcement, the
announcement itself must have directly affected expectations. We can test whether
the essentially-affine models mentioned above correctly (or, at least, plausibly)
decomposed the market changes in yields in their expectation and risk premium
components.9

The market interpretation of Mr. Bernanke’s words caused yields in the 5-to-
10-year maturity area to rise very sharply. Short-dated yields (say, of maturity of
two years or shorter) barely moved, however, because, in early 2013 not even a very
“hawkish” interpretation of Mr. Bernanke’s words could have implied a substantial

Source: Bloomberg.

Fig. 2. The behavior from September 2009 to June 2014 of the 2-year, 5-year and 10-year nominal
yields of Treasuries, as proxied by the 2.5% Treasury maturing 15 May 2024, the 15/8% Treasury
maturing 30 June 2019 and the 01/2% Treasury maturing 30 June 2016. The bottom half of the
graph shows the difference between the 10-year proxy yield and the 5-year and the 2-year proxy
yields, respectively.

4Since we look at yields below 10 years, changes in convexity play a small role in the decomposition.

1750027-13



R. Rebonato

rise in rates by early 2015. Therefore the effect on the yield curve of the “taper
tantrum” was a marked steepening of the yield curve. See Fig.

This mode of deformation of the yield curve was a direct result of the excep-
tional, but prolonged, monetary conditions prevailing at the time (the “ZIPR” —
Zero Interest Rate Policy): it was because the very short end was pinned, that
expectations of increased rates could only affect the medium-to-long end of the
yield curve and produce a yield-curve steepening.” It is important to stress that in
the pre-ZIRP times to which all the above-referred-to models have been trained,
hawkish statements by central bankers would have typically caused a flattening of
the yield curve (with the short end raising more than the long end).

Recall also that historically the steepening of the yield curve has been associated
with the early phases of a recession, and early recessionary phases have been the
periods with the highest Sharpe ratios for the excess-return strategy. See in this
respect Naik et al] (2016).5 Therefore the affine models (and the statistical analysis)
trained on data before the ZIRP period “interpret” the steepening of the yield
curve as a harbinger of high expected excess returns, and, via the deterministic link
between the market price of risk and the slope, are “forced” to produce strongly
increased risk premia.

The consequences of this are clearly reflected in Fig. Bl which shows the time
series of the 10-year nominal expected excess returns from March 2013 to late
summer 2014 produced by one of the models under discussion.® More precisely,
the top curve (labeled “10YQ”) shows the market 10-year yield; the curve labeled
“RiskPrem” displays the contribution to the observed 10-year yield from the risk
premium; the curve labeled “Slope [10-1]” shows the term premium predicted by
regressing excess returns for the period 1971-2010 (see footnote U) against the
yield-curve slope, proxied by the difference of the 10 minus the 1-year yields; and,
finally, the bottom curve, labeled “10YP” depicts the P-measure expectation of the
10-year yield — that is, the market 10-year yield minus the estimated risk premium.

Two observations jump from the page. First, the extreme closeness between the
econometric predictions and the yield-curve-variable affine-model predictions of the
risk premium. Second, the paradoxical result about expectations that the determin-
istic link between the market price of risk and the yield-curve slope produces: despite
the fact that the “taper tantrum” surprise was about the earlier-than-expected ris-
ing of rates, expectations barely change after the announcement," and almost all of

"Indeed, only a few weeks before the “taper tantrum” announcement, the median view expressed
by the FOMC members on 20 March 2013 about the most likely level for the Fed funds was around
20 basis points for the end of 2014, and 1% by the end of 2015. The reader can refer to Target
Fed funds rate, “blue dots”, 20 March 2013.

SSee p. 99, Exhibit 4.12 in particular.

tThe graph refers to the ) model. Qualitatively very similar conclusions can
be drawn by analyzing the responses of the other models under consideration.

UThe data used for this part of the study are from the Gurkaynak et al.’s (2007) dataset.

VAs it happens, a similar analysis conducted for the DAmico et al.’s (2010) model shows even a
small decrease in rate expectations. Nothing too significant should be read into this, apart from
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Fig. 3. The series of the 10-year nominal expected excess returns from March 2013 to late summer
2014 produced by the Rebonato et al.’s (2017) model: the top curve (labeled “10YQ”) shows
the market 10-year yield; the curve labeled “RiskPrem” displays the contribution to the observed
10-year yield from the risk premium; the curve labeled “Slope [10-1]” shows the term premium
predicted by regressing excess returns for the period 1971-2010 against the yield-curve slope,
proxied by the difference of the 10 minus the 1-year yields; and, finally, the bottom curve, labeled
“10YP” depicts the P-measure expectation of the 10-year yield — that is, the market 10-year yield
minus the estimated risk premium.

the observed market changed is “interpreted” by the model(s) as an increase in risk
premium.” Once again, this surprising behavior of the term premium (which implies
near-zero expectations for the 10-year yield) stems from the high steepness of the
yield curve in late 2013, which forces, via the inflexible link between the market price
of risk and the slope of the yield curve, implausibly high expected excess returns.

Of course, the potential for “pathological” attributions is not confined to the
“taper tantrum” period. As Ludvigson & NG (2009) have shown, yield-curve-only
variables in general, and the slope in particular, do not span the full excess-return
variability, and leave a substantial part of the predictability unexplained. There are
therefore several periods when the predictive yield-curve variables (say, the slope)
are in the same configuration, yet the most efficient predictions of excess returns
(that is, a prediction that used both yield-curve and macroeconomic variables)
would be significantly different.

As discussed in Sec. B, \oslin_et_all (|20J_AJ) have provided an elegant modeling
solution to this problem, by allowing a decoupling between the market price of risk
and the shape of the yield curve. Their approach, however, presents substantial
calibration challenges and, from the modeling perspective, relies on the “delicate

the fact the increase in risk premium forced by the steepening of the yield curve is so pronounced
in this model that the risk premium becomes even higher than the market yield.

W Admittedly, the “taper tantrum” announcement increased uncertainty in the market, and it can
therefore be argued that the risk premium should have increased as well. However, the fact still
remains that a (possibly misinterpreted) statement about an earlier-than-expected lifting of rates
should have changed (upwards) expectations.
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cancellation” discussed at the end of Sec.[3. We therefore “borrow” their insight that
the deterministic link between the yield-curve variables and the market price of risk
must be, if not broken, certainly loosened. We do so via an extremely parsimonious
reduced-form affine model, in which we assign a market price of risk which has
a mean-reverting behavior, and which is not spanned by the chosen yield-curve
variables. In our model, we want the slope/excess-return relationship to be still
recovered on average, but not in a hard deterministic manner. So, at any given
point in time, the curve could be steep, yet the market price of risk could be low
(or even negative). Hopefully, the breakage of the rigid deterministic link between
the shape of the yield curve and the market price of risk, but the simultaneous
preservation of the statistical link between the two quantities, will give rise to more
believable, and more useful, estimates of both risk premia and rate expectations.

5. The Model

In the simplest version of our model we use as state variables the short rate, its
own stochastic reversion level and the market price of risk. To simplify the anal-
ysis, and in line with standard findings (see e.g. |[Cochrane & Piazzesi 1201)3, |2QO.§,

i |ZD_1_3;|)7 we also assume in what follows that investors only seek compen-
sation for the uncertainty about the level of rates, which we proxy in our approach
as the long-term reversion level of the reversion level. We therefore assume that
the risks associated with uncertainty in the short rate and, as in

, in the market price of risk are not priced.

The model then is as follows:

dr? = kL0, — ri)dt + o,dz], (5.1)
do2 = kD[0F — 0,)dt + Nopdt + odz?, (5.2)
A\t = kx[Ae — AdJdt + oadz), (5.3)

where 74, 0; and \; are the time-t values of the short rate, its instantaneous reversion
level (the “target rate”) and the market price of risk, respectively; o,., 09 and o are
the associated volatilities: é\tﬂm and A are the reversion levels of the “target rate” and
of the market price of risk, respectively; and the increments dz}, dz! and dz;} are
suitably correlated (see below). The model is fully specified once the initial state,
ro, 6o and Ao, is given.

This model draws its inspiration from a simple version of the Taylor’s rule, and
is a variation on the theme of the well-known ‘monetary’ models and of similar
“monetary” models, in which the short rate is attracted to a mean-reverting target
rate.® For this interpretation to hold, it is usually assumed that, at least in the
objective measure, k2 > mfo) and o, < og.

*In more complex models of this family, the target rate can in turn be attracted to a mean-
reverting process. We do not pursue this avenue here, in order to limit the number of parameters
and to focus on the ability of the model to capture the essence of the problem at hand.
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As stated, we have assumed that investors only seek compensation for the uncer-
tainty about the long-term reversion level. It is for this reason that the reversion
speed, kL, of the short rate is the same in the real-world and in the risk-neutral
measures. Also, the long-term reversion level, @P, of the “target rate” (6;) that
appears in the term in square brackets on the right-hand side of Eq. (52) is in the
real-world measure. The increment, d@?, is then in the risk-neutral measure because
we are adding the risk compensation, \/s. We could equivalently have written

02 = kE[O2 — 6,]dt + ogdz], (5.4)
with
02 =205, (5.5)
Ky

The model can be easily solved analytically — the constitutive equations and
their solutions are given in Appendix A.

6. Qualitative Behavior of the Model

In this section we present the qualitative behavior of the model, and we check
whether it does behaves as it is designed to.

First of all, we show in Fig. [ one typical evolution over a 30-year horizon of
the three state variables with the following choice of parameters: 7o = —0.0042,
Oy = 0.0344, \g = 0.0744, K, = 0.3437, kg = 0.085, K\ = 0.2816, o, = 0.0050,
o9 = 0.0157, o5 = 0.1200, 87 = 0.0350, A, = 0.1287, p,g = 0.6, pyr = —0.05 and
pox = 0.64.

Next, we show in Fig. A a sample of 32 paths showing the evolution over 10
years for the market price of risk (Xt = 0.1287, A\p = 0.0744, k) = 0.2816; see
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0.08 L g Trin
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0.06 v e lam b (t)
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Fig. 4. A typical evolution over a 30-year horizon of the three state variables.
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Fig. 5. A sample of 32 paths showing the evolution over 10 years for the market price of risk.
The model parameters used for the simulation were: ro = —0.0042, 0y = 0.0344, Ao = 0.0744,
Ky = 0.3437, kg = 0.085, k) = 0.2816, o, = 0.0050, o = 0.0157, o) = 0.1200, Bf) = 0.0350,
X = 0.1287, pr9 = 0.6, prx = —0.05 and pgy = 0.64.

the calibration section for the parameter choice). We note that, with the cho-
sen parameters, (i) the market price of risk can assume both positive and neg-
ative values (as it is the case in reality); (ii) its distribution is centered around
the range of values for the Sharpe ratio observed in statistical studies (see e.g.

; (iil) it is attracted to a positive reversion level, which has
been set to the unconditional average Sharpe ratio of buy-long/fund/short “carry”
strategies.

One of the distinguishing features of the approach presented here is its ability to
generate a positive correlation between the slope of the yield curve and the market
price of risk. For a suitable choice of the correlation matrix among the three state
variables, the model can easily produce a significant correlation between the slope
of the yield curve and the market price of risk. Figure [l shows the correlated paths
of the yield-curve slope and of the market price of risk obtained with a correlation
coefficient, pgy, of 0.64 and a reversion speed for the market price of risk, ky, of
0.2816.

Importantly, the same figure shows that at any point in time the market price of
risk can be high or low even if the slope is low or high, respectively. In general, the
higher the volatility of the market price of risk, and the lower its reversion speed,
the greater its potential for assuming values other than what is implied by the
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Fig. 6. A time series of the slope and of the market price of risk over a 30-year period. The model
parameters used for the simulation were: rg = —0.0042, 6y = 0.0344, Ao = 0.0744, x, = 0.3437,
kg = 0.085, k) = 0.2816, o, = 0.0050, oy = 0.0157, o) = 0.1200, @P = 0.0350, A\; = 0.1287,
pro = 0.6, p.n = —0.05 and py) = 0.64.

deterministic dynamics, and to break the deterministic relationship between excess
returns and the return-predicting factor.

7. Calibration of the Model

Any model that tries to account both for the P- and the Q-dynamics must add
some source of information beside what is embedded in prices. As mentioned in
the introduction, in our study we make use of real-world forecasts. These can be

gleaned from a variety of sources. (Christensen & Kwarl (IZOJ.AI) discuss the expecta-

tions of federal funds rates from different surveys and from the FOMC participants’
funds rate projections. [Qmm;LQt_ai] (|2Ql_d) discuss and combine several sources of
information about expectations of rates (and other variables). For our purposes the
right-hand panel of the “blue dots” (such as the cluster labeled “Longer Run” in
Fig. [[) provided by the FOMC participants serves our purposes well, as it embodies
the expectations of rate-setting body of the long-term level of the target rate.Y We
stress that any of the survey-based sources of information could be used for the
study we describe.

YThe “blue dots” have been published quarterly since early 2012. There is one dot for responding
member. (The number of responding members is not identical in various meetings.) Each dot
represents the estimate of one member of the FOMC of the most likely value for where the Fed
funds will be at the end of the year when the question is posed, the following year and the year after
that. Finally, there is a dot from each member that reflects that member’s most likely estimate
of the “long-run” level of the Fed funds rate. Each dot therefore represents a mode (“the most
likely value”), not an average. This subtlety is not “innocuous”, especially at the short end of the
maturity spectrum, but should be of lesser relevance for the long-term estimates. The distinction
between the sample mode and the average has not been taken into account in our study.
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Appropriate pace of policy firming Percent

Target federal funds rate at year-end .
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Notes: In the upper panel, the height of each bar denotes the number of FOMC participants who
judge that, under appropriate monetary policy, the first increase in the target Federal funds rate
from its current rage 0-14% will occur in the specified calender year. In March 2014, the numbers
of FOMC participants who indged that the first increase in the target federal funds rate would
occur in 2014, 2015 and 2016 were, respectively, 1, 13 and 2. In the lower panel, each shaded circle
indicates the value (rounded to the nearest 1/4% point) of an individual participant’s judgment
of the appropriate level of the target Federal funds rate at the end of the specified calender year
or over the longer run.

Fig. 7. Overview of FOMC participants’ assessments of appropriate monetary policy. Each “dot”
represents the estimate of one member of the committee of the “most likely” value for the target
Fed funds rate on the projection dates on the x-axis.

In its most general formulation, the full specification of the model requires 11
parameters (three reversion speeds, two reversion levels, three volatilities and three
correlations); on any given day, the three initial values of the state variables also
have to be specified. This can raise concerns about the potential for overfitting, and
about the robustness of the approach. The number of degrees of freedom, however,
can be drastically reduced by proceeding as follows.

(1) The reversion level of the reversion level in the P-measure, @P’7 can be required
to be in the neighborhood of the “long-term blue dot” from the Fed quarterly
report. See again Fig.

(2) Since in a one-factor world the market price of risk equals the Sharpe ratio, the
reversion level of the stochastic market price of risk can be set in the vicinity
of the unconditional historical Sharpe ratio for the excess-return strategy.”

ZAs it is well known, the Sharpe ratio of the invest-long/fund-short US$ Treasury strategy is
mildly maturity-dependent. This statistic also shows a dependence on the precise historical period
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(3) If the financial interpretation in terms of a target rate alluded to above is to
be valid, the reversion speed of the short rate should be much higher than the
reversion speed of the reversion level kI > x?. [See in this respect the discussion
in [Erekhinskiyl (2013).]

(4) This also requires that the volatility of the short rate should be lower than the
volatility of the reversion level: o, < 0y. [See again [Erekhinskiy (2013).]

(5) A priori, we cannot say much about the relative volatility of the market price of
risk and of the target rate, and we will therefore let the calibration to the yield
covariance matrix give us some guidance. However, we can have an order-of-
magnitude estimate of the volatility of the market price of risk from the range
of the historical variation of the Sharpe ratio over the 40 years in our dataset.

(6) In order to recover the “humped” shape of the term structure of yield volatilities
[see Rebonato (2002) for a discussion of the origin of the “hump” in the context
of the related US interest-rate swaption market], the correlation between the
short rate and the reversion level, p, g, should be of the order of 0.4-0.8. Also
in this respect see Erekhinskiy (l2D_l_d)

(7) In order to recover the average (positive) dependence of the market price of
risk on the slope, it is easy to calculate that we have to set the correlations p;.»
and pgx to have opposite signs, and pgy to be positive (negative) for upward-
(downward-)sloping yield curves.

(8) The initial value of the short rate must be in the vicinity of the current Fed
funds rate.®®

Furthermore, to enhance robustness, we calibrate separately to the degrees of
freedom (the reversion-speed matrix and volatility matrix) that control the covari-
ance matrix (or the swaption prices), and to those that affect the shape of the
yield curve (the reversion-level vector and the initial-state vector). As well known,
the latter have no effect on the model covariance structure, but the former have a
modest effect (through convexity) on the shape of the yield curve.PP

More precisely, the two-stage calibration is conducted as follows.

For the first phase we start from a statistically-determined yield-covariance
matrix, Yk, and we equate it to the model covariance matrix, Y04, that is
immediately derived to be given by

Ymod = E[dydy™] = BTSST B,

used for its estimation. We have therefore allowed the nonlinear search over the reversion level of
the market price of risk to find an optimal value in the range of the highest and lowest empirical
Sharpe ratios.

aaThis choice becomes more complex when we introduce the shadow rate. See the discussion in
Sec.[d.

bb A joint calibration of the reversion speeds, reversion levels and volatilities to the yield curve and
the yield-covariance matrix will in general produce a closer fit, but, for a finite maximum maturity,
there is a risk that the reversion levels and the volatilities will “play against each other”, with
higher and higher reversion levels, which pull the yield curve upwards, compensated for by higher
and higher volatilities — and hence higher convexity — which pull the yield curve down.
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with the matrices S and B as per Eqs. (£2)-(@4). (The translation of the model
Egs. (BI)-(E3) to the canonical form (42)) is provided in Appendix A.) The cal-
ibration is carried out by minimizing an appropriate distance between the model
and the market covariance matrices. The distance is chosen to be the sum of the
weighted squares of the differences between all the same-row, same-column elements
of the two matrices. The weights are such that double importance is given to the
diagonal elements of the matrix, because these are (squares of) the yield volatili-
ties, which directly affect the convexity curvature of the yield curve. This stage of
the calibration fixes the reversion-speed parameters (k,, kg and k), the volatility
parameters (o, op and o) and the correlations.

This set of parameters are then kept fixed in the second stage of the calibration,
where yield-curve information is brought to the fore, by fitting to the market yield
curve the initial values of the state variables (rg, 6y and A\g) and the reversion levels
é\tP and \. More precisely, we calculate the model yields as

mo 1
yt,Td I log P = of + (ﬁf)Ta;, (7.1)
with
1
of = N log AT, (7.2)
1
Bl = —T_tlogBtT. (7.3)

We then choose the initial values of the state variables and the parameters @P’ and
\ in such a way as to minimize the unweighted sum of the squares of the differences
between the market and the model yields. The market yields for discount bonds
were obtained from the Federal Reserve data by |Gurkaynak et al. (IQJ)Dﬂ, |2J)D_Z|)

Of course, wherever appropriate, the soft or hard constraints expressed in the
preceding bullet points are enforced in the optimization phase.

8. Results

Since our focus is the estimation of risk premia and expectations, and since this
estimation always takes as a starting point the observed market yields, it is essential
to ascertain that the yield contribution from convexity is well recovered, and that
market yields are accurately reproduced by the our model. We explore these two
aspects in this section.

8.1. Quality of fit to the covariance matriz

We calculated the market and model covariance matrices for changes in yields of
maturities out to 10, 20 and 30 years [US$, market covariance matrix sampled over
2000 business days, before and up to September 2014, data from

]. Figures Bland @l show the market and the model yield covariance matrices
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Fig. 8. The market yield covariance matrices for yields from 1 year to 20 years obtained from the
data described in the text.

Square Root of Model Covariance Matrix

maturity (years) maturity (years)

Fig. 9. The model yield covariance matrices for yields from 1 year to 20 years obtained with the
parameters reported in the text.
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for yields from 1 to 20 years. The model yield covariance matrix was obtained with
a constrained choice of parameters, and the optimal sets of volatility and reversion
speeds obtained using yields of maturities out to 10, 20 and 30 years are shown in
Tab Cov:

10y 20y 30y
or 0.00561 0.0050 0.0055
op 0.0161 0.0157 0.0153
oy 0.1200 0.1200 0.1200]. (8.1)
Ky 0.4105 0.3437 0.2737
kg 0.1001 0.0850 0.0667
ko 0.4224  0.2816 0.2816

Tab Cov: The parameters of the model as obtained from the calibration to the
empirical covariance matrices among yield (changes) of maturity out to 10 (column
labeled “10y”), 20 (column labeled “20y”) or 30 years (column labeled “30y”).

It is reassuring to note the stability of the optimal parameters obtained by fitting
to the covariance matrices among yield (changes) of maturity out to 10, 20 or 30
years.

Figures[§ and [0 show that the recovery of the empirical covariance matrix, while
far from perfect, was generally good. This is important for the decomposition of
observed market yield into an expectation, a risk premium and a convexity com-
ponent (which is one of the main goals of this study). As shown in Rebonato and
Putiatyn (2017), any affine model that recovers correctly the yield curve and all
the yield volatilities will always produce the correct theoretical convexity. Since the
overall convexity contribution is relatively modest for all but the longest maturities,
small mistakes in recovering the yield volatilities give rise to negligible mistakes in
the overall yield decomposition. So, the imperfect recovery of the target covariance
matrix will have but a modest effect on the estimation of expectations and risk
premia.

8.2. Quality of fit to the yield curve

The attribution of the expectation and risk-premia components of the various yields
would obviously fail if market yields were not accurately recovered by the approach
we propose. In this subsection we therefore look carefully at the accuracy of the
market yield-curve recovery.

The “market’;lzoifﬁlds were obtained from the data made available by
Gurkaynak et al! ).

An example of the quality of the fit to the yield curve obtained by keeping the
reversion-speed matrix and the volatility matrix fixed to the values obtained in the

calibration to the covariance matrix, and by varying the initial state vector, xg, and
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the reversion levels, é\tp and X, is shown for three terminal maturities in Figs. TOHIZ
(The US$ curve used was the Treasury curve for May 2014.)

In all cases, the cross-sectional fit to the market yields was excellent. When the
fit was carried out to different final maturities (10, 20 or 30 years) the resulting
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Fig. 10. The fit to the yield curve out to 10 years obtained by keeping the reversion-speed matrix
and the volatility matrix fixed to the values obtained in the calibration to the covariance matrix,
and by varying the initial state vector, xo, and the reversion levels, 95 and A;. (For May 2014.)
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Fig. 11. Same as Fig. but with maturities extended out to 20 years.
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Fig. 12. Same as Fig. [0 but with maturities extended out to 30 years.

maturity (years)

parameters (not reported for the sake of brevity) turned out to be very similar,

irrespective of the final yield maturity to which the model was calibrated.

Figures [LOH12ljust provide a snapshot of the quality of the fit to the yield curve
for one typical day. A more systematic picture of the quality of the yield-curve fits is
provided by Figs. [I3]to[T6], which show the market and model yields and the pricing
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Fig. 13. Quality of the daily fits to the 3-year yield over a typical two-year period. The left-hand
side y-axis shows the market and model yields and the right-hand side y-axis displays the error.
We note in passing that the sharp change in pricing error occurs in correspondence of the “taper
tantrum” discussed at length in Sec. 4]
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Fig. 14. Same as Fig. [[3]for the 5-year yield.
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Fig. 15. Same as Fig. [[3 for the 10-year yield.

errors for four reference yields (the 3-year, 5-year, 10-year and 30-year yields) over
a two-year period. As apparent, the model always recovers very well (i.e. to within
a few basis points) the market yields.

In sum, given the main focus of our work, the small magnitude of the pricing
errors (differences between market and model yields) reported in this subsection
gives us confidence that this source of error will not significantly affect our estimates
of risk premia.
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Fig. 16. Same as Fig. [[3] for the 30-year yield.

8.3. The risk premia predicted by the model

Figure [T shows the time series of the model predictions for the risk premia for sev-
eral selected yields, and Fig. [L8 shows the difference obtained in May 2014 between
the market yields (top curve, labeled “Q-measure”) and the yields that would be
“obtained” if investors had the same expectations as they do in the real world, but
were risk-neutral (curve labeled “P-measure”).

2.00%

Risk premia for different yield maturities

1.00%

0]

S

=x
Il

Risk premiym

-1.00%

-1.50%

Fig. 17. Time series of the model predictions for the risk premia for the 5-; 10-, 15- and 30-year
yields.
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Fig. 18. The best-fit model yield curve (labeled “Q-measure”) with the parameters discussed in
the text and the best-fit yield curve after subtracting the term premia, for the US$ Treasury yield
curve in May 2014.

We find the predictions about the magnitude of the expectation and risk-
premium contribution to the observed market yields consistent with the consensus
((ifmde;lining risk premia in the last few years. See e.g. the work of

).

We discussed at length in Sec. the significance of the “real-life experiment”
provided by the “taper tantrum” events of 2013 in assessing the ability of essentially-
affine models to recover expectations and risk premia convincingly. How does the
model we have so far presented fare in this respect?

When we apply a magnifying glass to the “taper tantrum” period (see Fig.[I9) we
find the prediction for the model presented here more convincing than the estimates
produced by the all-yield-curve variables models shown in Fig. [l In particular,
in the period following Chairman Bernanke’s 2013 pronouncements, Figs. [3HIG
clearly show that our model says that during this period risk premia for the 5-year
yields did increase (as it is reasonable that they should have, given the heightened
uncertainty), but that expectations increased more than the risk premia.

This should be contrasted with the predictions for risk premia and expecta-
tions of a model such as D’Amico et all (2010): as Fig. BTl illustrates, their model
predicts a minor decline in expectations after the “taper tantrum” announce-
ment by the Chairman Bernanke, and a more-than compensating increase in risk
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Fig. 19. The expectations for the 2-, 3-, 5- and 10-year yields produced by the model presented in
this paper during the “taper tantrum” events discussed in Sec. @l (mid-June 2013).

premium. Indeed, according to all the essentially-affine yield-curve-variable-only
models discussed in Sec. [, changes in risk premia drive the bulk of the variation in
5-year-plus market yields.®® See again Fig. [l According to our model, changes in
expectations play the more important role, and risk premia a minor part, but in the
same direction. Given the exquisitely expectation-based nature of the “tapering”
pronouncements, we find the decomposition produced by the model we propose
more plausible.

As discussed, the origin of this enhanced plausibility is to be found in the break-
age of the deterministic link between the slope of the yield curve and the market
price of risk enforced by other models. Without our imposing that this should be
the case (today’s value of the market price of risk, Ao, is one of the few quantities
we do not preassign), we find the result that today’s level of the market price of risk
is significantly below its reversion level (and very significantly below the historical
Sharpe ratio).

As for the reversion level of the market price of risk (which was also left uncon-
strained in the optimization), this turned out to be X = 0.128. To gauge its rea-
sonableness, we recall that, in a one-factor setting, the market price of risk should
equal the Sharpe ratio. If we assume that the one-factor assumption is not too
unreasonable, the value we find for the reversion level of the market price of risk

¢“We choose the 5-year yield as a meaningful point of the yield curve because even the most dovish
members of the FOMC believed that rates would have escaped the ZIRP regime at the time — as
documented by the “blue dots” forward guidance at the time. The 5-year yield should therefore
be definitely affected by changing expectations for the path of the Fed funds.
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Fig. 20. The risk premia for 5-, 10-, 20- and 30-year yields produced by the D’Amico et al.’s
(2010) model during the “taper tantrum” period. Note the sharp increase in the risk premia after
the late-March “taper tantrum” announcement.

is towards the lower end of historical estimates of the Sharpe ratio for the “long-
duration” bond-holding strategy. This would be consistent with the mid-2010s idea
of a “New Normal”, according to which real returns in all asset classes, and in
fixed-income products in particular, will, on the secular horizon, turn out to be
lower than they have been in the past. See again in this respect Fig. [I8 which
shows the best-fit model yield curve (labeled “Q-measure”), and the best-fit yield
curve after subtracting the term premia.

9. The Effect of the Shadow Rate

One of the main goals of the approach proposed here is the robust estimation of risk
premia and expectations. Since extremely low rates have been a common feature
in several developed-market currencies throughout the last decade, it is important
to ascertain to what extent the predictions of risk premia are sensitive to different
choices of the interest-rate “floor”.

The intuition as to why a floor, K, should affect expectations and risk premia is
straightforward: if we write a given forward rate as the sum of the expected future
value of the short rate, E;[rr], of the attending risk premium, rp}, and of the option
value, Opt(K,T),

ftT = Lk [TT] + I‘p? + Opt(Ka T)v (91)
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Fig. 21. The 5-year market yield produced by the D’Amico et al.’s (2010) model during the “taper
tantrum” period (see the text for a discussion), decomposed into its expectation component (top
curve in the upper panel) and its term premium (bottom curve in the top panel). The bottom
panel compares the same term premium with the slope (top curve).

and we recall that the option value must always be nonnegative, we see that, for a
given market-observed forward rate, the existence of a floor must lower the sum of
the expectation and the risk premium.

These considerations become particularly interesting if one tries to link the esti-
mate of these quantities to macrofinancial variables, and to the state of the economy.
As Bomfid (M) says, “investors and policy-makers alike would be considerably
misled if they were to take the positive slope of [the yield curve built without
the term Opt(K,T)] as an indication that market participants expect that eco-
nomic activity is likely to increase in the future. In reality, the negative slope of
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Fig. 22. Time series of the risk premia for the 10-year yield obtained using floors for the shadow
rate located at —40 (blue line), —25 (red line) and +25 (green line) basis points.

the equilibrium [...] yield curve [built with the term Opt(K,T)] suggests that the
economy is expected to remain trapped in its low-activity equilibrium well into the
future. Thus we have a situation when an upward sloping (observed) yield curve
is signalling expectations of a prolonged slump in the economy. This is exactly the
opposite of the usual indicator property attributed to the yield curve!” 4

We therefore show in Fig. 22 the time series of the 10-year risk premium in the
presence of an interest-rate floor, where the associated option value was calculated
using the approach in Xu & Wia (2015) for values of the floor of 25, —25 and —40
basis points.

A level of 425 basis points is the strike used in (Wi & Xid (@), as Government
bond yields have recently become negative for some European sovereign issuers, we
have also looked at the sensitivity of the results to different (lower) floor levels.
There are some minor differences, but Fig. shows that the same qualitative
pattern shown in Fig. [T is still clearly evident. More precisely, we found that the
average, maximum and minimum differences in risk premia without a floor and
for a floor of —25 basis points are 13, 31 and 2 basis points for the 5-year yield,
respectively, and are 27, 46 and 6 basis points, respectively, for the 10-year yield.
(The increase in “option value” for the longer yield, despite the fact that the 10-year
yield is more “out of the money” than the five-year yield, stems from the interplay
between nearness of the rate path to the floor, the level of the reversion level and
the option time.)

ddBomfid (2003, pp. 8-9), emphasis added.
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Overall, we can therefore conclude that including the effect from the rate floor
changes somewhat the attribution of the observed yields to risk premia and expec-
tations, but does not change the qualitative conclusions drawn in the rest of the

paper.

10. Conclusions

We have presented a stochastic-market-price-of-risk affine model that is in the
spirit of the work by Joslin et all (IM) One of the most appealing features of
the approach we present is its ability to break the deterministic link between the
market price of risk and the yield-curve state variables that essentially-affine, yield-
curve-based-models are constrained to impose. Since our goal is to produce reliable
and stable estimates of risk premia and expectations, we have shown that this degree
of flexibility can be very important.

We find that the proposed model fits well the market covariance matrix, and
that its pricing errors to market yields are very small. Apart from giving an intrinsic
confidence in the reasonableness of the approach, these features are important for
the reliable estimation of risk premia and expectations.

We analyzed in detail the predictions during the “taper tantrum” period pro-
duced by our model, and by models with a market price of risk described by a
deterministic (affine) function of the state variables. We explained why it would be
unwise to rely on the expectation/risk-premium decomposition afforded by these

model in the abnormal conditions of rate repression observed after the Great Reces-
sion. We argued that the decomposition afforded by our model is in this respect
more plausible.

The model is parsimonious, robust and easy to calibrate. It can be regarded as a
particularly simple instance of a class of reduced-form stochastic volatility models.
An obvious extension would be to use principal components as the yield-curve-based
state variables. We leave this line of research for future work.

Appendix A. Solving the Model
Given a process for a vector, x;, of generic state variables
dxy = K(0 — x¢)dt + Sdz;, (A1)

such that

re=1u, + gl %, (A.2)
the bond price, P/ = P(7), is given by

PT = A B xe (A.3)
with A7 and BT obtained as the solutions of ordinary differential equations

dA(T)
dr

= —u, + BIKO + %BTSSTBE, (A.4)
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d]zf) = —g- k"B, (A.5)
with the initial conditions
A(0) = 0, (A.6)
B(0) = 0. (A7)
Assuming K to be invertible and diagonalizable as K = LLL™!, one obtains
B(r) = (7~ L)(K") g, (A8)
B! =g"K e ™ — 1], (A.9)
A(7) = Inty + Inty + Ints, (A.10)
with
Inty = —u, T, (A.11)
Inty = g” (LL™'D(T)LL™'6 — OT), (A.12)
Ints = Intd + Int} 4 Int§ + Intd, (A.13)
Int§ = %gT/C—lLF(T)z—lLTg, (A.14)
Int} = —%gTIC’lC(L’l)TD(T)L’lLTg, (A.15)
Int§ = —%gTIC_lLD(T)L_lC(ICT)_lg, (A.16)
Intd = %gTIC’IC(ICT)’lgT (A.17)

with M = L='C(L™Y", F = [fij], and

Fig = mi—- o p— (A.18)
1 —elaT
C=S88%. (A.20)

In the case of the model at hand, these equations specialize as follows. Let the
model be

dry = k(0 — ry)dt + o,dz], (A.21)
db; = rp(©> — 0,)dt + Noldt 4 o%d2?

= [k0O% — kgb; + N o]dt 4+ 0%d2?, (A.22)
d\9 = k(A = \)dt 4 o7 dz), (A.23)
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with
E[drdd] = pro,
Eldrd\] = poa,
E[d0dN] = pox.

(A.24)
(A.25)
(A.26)

Then, after numbering the state variables as \! = z}, 6; = 22 and r; = 3, one has

R\ 0 0
’C = | —0p Ko 0
i 0 —Ky Ky
~ Ac©
(7'491\0O
C,_,)OO
9 = + Y]
AOO
o= + 22
L Ko

(A.27)

(A.28)

The affine transformation from the state variables to the short rate is given by

up = 0,
g’ =1[0,0,1].
For the matrix S one obtains
s11 O 0
S=|s21 s22 O

S31  S32  S33
with
§11 = Ox,
S$21 = 09PNG,
S92 = 0g\/1 — p3gs
§31 = OrPAr,

$32 = Op

Por — PrOPAr)?
533:Jr\/1—pir——( 1 ,02,0 )
— Pxo
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