We provide a representation for the nonmyopic optimal portfolio of an agent consuming only at the terminal horizon when the single state variable follows a general diffusion process and the market consists of one risky asset and a risk-free asset. The key term of our representation is a new object that we call the “rate of macroeconomic fluctuation” whose properties are fundamental for the portfolio dynamics. We show that, under natural cyclicality conditions, (i) the agent’s hedging demand is positive (negative) when the product of his prudence and risk tolerance is below (above) 2 and (ii) the portfolio weights decrease in risk aversion.
We provide a representation for the nonmyopic optimal portfolio of an agent consuming only at the terminal horizon when the single state variable follows a general diffusion process and the market consists of one risky asset and a risk-free asset. The key term of our representation is a new object that we call the “rate of macroeconomic fluctuation” whose properties are fundamental for the portfolio dynamics. We show that, under natural cyclicality conditions, (i) the agent’s hedging demand is positive (negative) when the product of his prudence and risk tolerance is below (above) 2 and (ii) the portfolio weights decrease in risk aversion.
Type : | Working paper |
---|---|
Date : | 10/04/2010 |
Keywords : |
Portfolio Management |